Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Amino Acids ; 56(1): 10, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315232

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that lacks convenient and accessible peripheral blood diagnostic markers and effective drugs. Metabolic dysfunction is one of AD risk factors, which leaded to alterations of various metabolites in the body. Pathological changes of the brain can be reflected in blood metabolites that are expected to explain the disease mechanisms or be candidate biomarkers. The aim of this study was to investigate the changes of targeted metabolites within peripheral blood of AD mouse model, with the purpose of exploring the disease mechanism and potential biomarkers. Targeted metabolomics was used to quantify 256 metabolites in serum of triple transgenic AD (3 × Tg-AD) male mice. Compared with controls, 49 differential metabolites represented dysregulation in purine, pyrimidine, tryptophan, cysteine and methionine and glycerophospholipid metabolism. Among them, adenosine, serotonin, N-acetyl-5-hydroxytryptamine, and acetylcholine play a key role in regulating neural transmitter network. The alteration of S-adenosine-L-homocysteine, S-adenosine-L-methionine, and trimethylamine-N-oxide in AD mice serum can served as indicator of AD risk. The results revealed the changes of metabolites in serum, suggesting that metabolic dysregulation in periphery in AD mice may be related to the disturbances in neuroinhibition, the serotonergic system, sleep function, the cholinergic system, and the gut microbiota. This study provides novel insights into the dysregulation of several key metabolites and metabolic pathways in AD, presenting potential avenues for future research and the development of peripheral biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Masculino , Ratones , Adenosina , Biomarcadores , Metabolómica/métodos , Ratones Transgénicos , S-Adenosilhomocisteína/química
2.
Biosci Biotechnol Biochem ; 87(7): 717-723, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37096382

RESUMEN

S-Adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) are important biochemical intermediates. SAM is the major methyl donor for diverse methylation reactions in vivo. The SAM to SAH ratio serves as a marker of methylation capacity. Stable isotope-labeled SAM and SAH are used to measure this ratio with high sensitivity. SAH hydrolase (EC 3.13.2.1; SAHH), which reversibly catalyzes the conversion of adenosine and L-homocysteine to SAH, is used to produce labeled SAH. To produce labeled SAH with high efficiency, we focused on the SAHH of Pyrococcus horikoshii OT3, a thermophilic archaeon. We prepared recombinant P. horikoshii SAHH using Escherichia coli and investigated its enzymatic properties. Unexpectedly, the optimum temperature and thermostability of P. horikoshii SAHH were much lower than its optimum growth temperature. However, addition of NAD+ to the reaction mixture shifted the optimum temperature of P. horikoshii SAHH to a higher temperature, suggesting that NAD+ stabilizes the structure of the enzyme.


Asunto(s)
NAD , Pyrococcus horikoshii , Pyrococcus horikoshii/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homocisteína , Hidrolasas/metabolismo
3.
J Med Chem ; 65(14): 9750-9788, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35849534

RESUMEN

Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.


Asunto(s)
Metiltransferasas , Neoplasias , Proteínas Arqueales , Células CACO-2 , ADN , Humanos , Neoplasias/tratamiento farmacológico , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilhomocisteína/farmacología , S-Adenosilmetionina/metabolismo
4.
J Am Chem Soc ; 144(6): 2535-2545, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108000

RESUMEN

We report the measurement and analysis of sulfonium-π, thioether-π, and ammonium-π interactions in a ß-hairpin peptide model system, coupled with computational investigation and PDB analysis. These studies indicated that the sulfonium-π interaction is the strongest and that polarizability contributes to the stronger interaction with sulfonium relative to ammonium. Computational studies demonstrate that differences in solvation of the trimethylsulfonium versus the trimethylammonium group also contribute to the stronger sulfonium-π interaction. In comparing sulfonium-π versus sulfur-π interactions in proteins, analysis of SAM- and SAH-bound enzymes in the PDB suggests that aromatic residues are enriched in close proximity to the sulfur of both SAM and SAH, but the populations of aromatic interactions of the two cofactors are not significantly different, with the exception of the Me-π interactions in SAM, which are the most prevalent interaction in SAM but are not possible for SAH. This suggests that the weaker interaction energies due to loss of the cation-π interaction in going from SAM to SAH may contribute to turnover of the cofactor.


Asunto(s)
Compuestos de Amonio/metabolismo , Péptidos/metabolismo , Compuestos de Sulfonio/metabolismo , Compuestos de Amonio/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metilaminas/química , Metilaminas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Estructura Molecular , Péptidos/química , Unión Proteica , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Electricidad Estática , Compuestos de Sulfonio/química , Termodinámica , Thermus thermophilus/enzimología
5.
Autophagy ; 18(2): 309-319, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33993848

RESUMEN

S-adenosyl-l-homocysteine (SAH), an amino acid derivative, is a key intermediate metabolite in methionine metabolism, which is normally considered as a harmful by-product and hydrolyzed quickly once formed. AHCY (adenosylhomocysteinase) converts SAH into homocysteine and adenosine. There are two other members in the AHCY family, AHCYL1 (adenosylhomocysteinase like 1) and AHCYL2 (adenosylhomocysteinase like 2). Here we define AHCYL1 function as a SAH sensor to inhibit macroautophagy/autophagy through PIK3C3. The C terminus of AHCYL1 interacts with SAH specifically and the interaction with SAH promotes the binding of the N terminus to the catalytic domain of PIK3C3, resulting in inhibition of PIK3C3. More importantly, this observation was further validated in vivo, indicating that SAH functions as a signaling molecule. Our study uncovers a new axis of SAH-AHCYL1-PIK3C3, which senses the intracellular level of SAH to inhibit autophagy in an MTORC1-independent manner.Abbreviations: ADOX: adenosine dialdehyde; AHCY: adenosylhomocysteinase; AHCYL1: adenosylhomocysteinase like 1; cLEU: cycloleucine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; SAH: S-adenosyl-l-homocysteine; SAM: S-adenosyl-l-methionine.


Asunto(s)
Autofagia , S-Adenosilhomocisteína , Adenosilhomocisteinasa/química , Adenosilhomocisteinasa/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33972410

RESUMEN

The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.


Asunto(s)
Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/química , Cristalografía , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , ARN Mensajero/química , ARN Viral/química , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sincrotrones , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo
7.
Proteins ; 89(2): 185-192, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32875607

RESUMEN

S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) are widely distributed among almost all organisms and often characterized with conserved Rossmann fold, TIM barrel, and D×G×G×G motif. However, some MTases show no methyltransferase activity. In the present study, the crystal structure of LepI, one MTase-like enzyme isolated from A. flavus that catalyzes pericyclic reactions, was investigated to determine its structure-function relationship. The overall structure of LepI in complex with the SAM mimic S-adenosyl-L-homocysteine (SAH) (PDB ID: 6IV7) indicated that LepI is a tetramer in solution. The residues His133, Arg197, Arg295, and Asp296 located near the active site can form hydrogen bonds with the substrate, thus participating in catalytic reactions. The binding of SAH in LepI is almost identical to that in other resolved MTases; however, the location of catalytic residues differs significantly. Phylogenetic trials suggest that LepI proteins share a common ancestor in plants and algae, which may explain the conserved SAM-binding site. However, the accelerated evolution of A. flavus has introduced both functional and structural changes in LepI. More importantly, the residue Arg295, which is unique to LepI, might be a key determinant for the altered enzymatic behavior. Collectively, the differences in the composition of catalytic residues, as well as the unique tetrameric form of LepI, define its unique enzymatic behavior. The present work provides an additional understanding of the structure-function relationship of MTases and MTase-like enzymes.


Asunto(s)
Aspergillus flavus/enzimología , Proteínas Fúngicas/química , Metiltransferasas/química , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Secuencia de Aminoácidos , Aspergillus flavus/química , Aspergillus flavus/clasificación , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Enlace de Hidrógeno , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Nucleic Acids Res ; 48(13): 7545-7556, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32520325

RESUMEN

While most SAM riboswitches strongly discriminate between SAM and SAH, the SAM/SAH riboswitch responds to both ligands with similar apparent affinities. We have determined crystal structures of the SAM/SAH riboswitch bound to SAH, SAM and other variant ligands at high resolution. The riboswitch forms an H-type pseudoknot structure with coaxial alignment of the stem-loop helix (P1) and the pseudoknot helix (PK). An additional three base pairs form at the non-open end of P1, and the ligand is bound at the interface between the P1 extension and the PK helix. The adenine nucleobase is stacked into the helix and forms a trans Hoogsteen-Watson-Crick base pair with a uridine, thus becoming an integral part of the helical structure. The majority of the specific interactions are formed with the adenosine. The methionine or homocysteine chain lies in the groove making a single hydrogen bond, and there is no discrimination between the sulfonium of SAM or the thioether of SAH. Single-molecule FRET analysis reveals that the riboswitch exists in two distinct conformations, and that addition of SAM or SAH shifts the population into a stable state that likely corresponds to the form observed in the crystal. A model for translational regulation is presented whereby in the absence of ligand the riboswitch is largely unfolded, lacking the PK helix so that translation can be initiated at the ribosome binding site. But the presence of ligand stabilizes the folded conformation that includes the PK helix, so occluding the ribosome binding site and thus preventing the initiation of translation.


Asunto(s)
Pliegue del ARN , Riboswitch , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Emparejamiento Base , Transferencia Resonante de Energía de Fluorescencia , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
9.
Nucleic Acids Res ; 48(3): 1572-1582, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31919512

RESUMEN

BCDIN3 domain containing RNA methyltransferase, BCDIN3D, monomethylates the 5'-monophosphate of cytoplasmic tRNAHis with a G-1:A73 mispair at the top of an eight-nucleotide-long acceptor helix, using S-adenosyl-l-methionine (SAM) as a methyl group donor. In humans, BCDIN3D overexpression is associated with the tumorigenic phenotype and poor prognosis in breast cancer. Here, we present the crystal structure of human BCDIN3D complexed with S-adenosyl-l-homocysteine. BCDIN3D adopts a classical Rossmann-fold methyltransferase structure. A comparison of the structure with that of the closely related methylphosphate capping enzyme, MePCE, which monomethylates the 5'-γ-phosphate of 7SK RNA, revealed the important residues for monomethyl transfer from SAM onto the 5'-monophosphate of tRNAHis and for tRNAHis recognition by BCDIN3D. A structural model of tRNAHis docking onto BCDIN3D suggested the molecular mechanism underlying the different activities between BCDIN3D and MePCE. A loop in BCDIN3D is shorter, as compared to the corresponding region that forms an α-helix to recognize the 5'-end of RNA in MePCE, and the G-1:A73 mispair in tRNAHis allows the N-terminal α-helix of BCDIN3D to wedge the G-1:A73 mispair of tRNAHis. As a result, the 5'-monophosphate of G-1 of tRNAHis is deep in the catalytic pocket for 5'-phosphate methylation. Thus, BCDIN3D is a tRNAHis-specific 5'-monomethylphosphate capping enzyme that discriminates tRNAHis from other tRNA species, and the structural information presented in this study also provides the molecular basis for the development of drugs against breast cancers.


Asunto(s)
Metiltransferasas/ultraestructura , ARN de Transferencia de Histidina/ultraestructura , ARN de Transferencia/genética , S-Adenosilhomocisteína/química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Cristalografía por Rayos X , Citoplasma/química , Citoplasma/genética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Conformación Proteica en Hélice alfa , Pliegue de Proteína , ARN de Transferencia/química , ARN de Transferencia de Histidina/química , ARN de Transferencia de Histidina/genética
10.
Biochemistry ; 59(5): 652-662, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31917549

RESUMEN

Viperin is a radical S-adenosylmethionine (SAM) enzyme that inhibits viral replication by converting cytidine triphosphate (CTP) into 3'-deoxy-3',4'-didehydro-CTP and by additional undefined mechanisms operating through its N- and C-terminal domains. Here, we describe crystal structures of viperin bound to a SAM analogue and CTP or uridine triphosphate (UTP) and report kinetic parameters for viperin-catalyzed reactions with CTP or UTP as substrates. Viperin orients the C4' hydrogen atom of CTP and UTP similarly for abstraction by a 5'-deoxyadenosyl radical, but the uracil moiety introduces unfavorable interactions that prevent tight binding of UTP. Consistently, kcat is similar for CTP and UTP whereas the Km for UTP is much greater. The structures also show that nucleotide binding results in ordering of the C-terminal tail and reveal that this region contains a P-loop that binds the γ-phosphate of the bound nucleotide. Collectively, the results explain the selectivity for CTP and reveal a structural role for the C-terminal tail in binding CTP and UTP.


Asunto(s)
Citidina Trifosfato/química , Proteínas/química , Proteínas/metabolismo , S-Adenosilhomocisteína/química , Uridina Trifosfato/química , Animales , Cristalografía por Rayos X , Citidina Trifosfato/metabolismo , Cinética , Ratones , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas/genética , S-Adenosilhomocisteína/metabolismo , Especificidad por Sustrato , Uridina Trifosfato/metabolismo
11.
J Mol Biol ; 432(2): 410-426, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31726063

RESUMEN

Prozymes are pseudoenzymes that stimulate the function of weakly active enzymes through complex formation. The major Trypanosoma brucei protein arginine methyltransferase, TbPRMT1 enzyme (ENZ), requires TbPRMT1 prozyme (PRO) to form an active heterotetrameric complex. Here, we present the X-ray crystal structure of the TbPRMT1 ENZ-Δ52PRO tetrameric complex with the cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.4 Å resolution. The individual ENZ and PRO units adopt the highly-conserved PRMT domain architecture and form an antiparallel heterodimer that corresponds to the canonical homodimer observed in all previously reported PRMTs. In turn, two such heterodimers assemble into a tetramer both in the crystal and in solution with twofold rotational symmetry. ENZ is unstable in absence of PRO and incapable of forming a homodimer due to a steric clash of an ENZ-specific tyrosine within the dimerization arm, rationalizing why PRO is required to complement ENZ to form a PRMT dimer that is necessary, but not sufficient for PRMT activity. The PRO structure deviates from other, active PRMTs in that it lacks the conserved η2 310-helix within the Rossmann fold, abolishing cofactor binding. In addition to its chaperone function for ENZ, PRO substantially contributes to substrate binding. Heterotetramerization is required for catalysis, as heterodimeric ENZ-PRO mutants lack binding affinity and methyltransferase activity toward the substrate protein TbRGG1. Together, we provide a structural basis for TbPRMT1 ENZ activation by PRO heterotetramer formation, which is conserved across all kinetoplastids, and describe a chaperone function of the TbPRMT1 prozyme, which represents a novel mode of PRMT regulation.


Asunto(s)
Complejos Multiproteicos/ultraestructura , Conformación Proteica , Proteína-Arginina N-Metiltransferasas/ultraestructura , S-Adenosilhomocisteína/química , Trypanosoma brucei brucei/ultraestructura , Secuencia de Aminoácidos/genética , Catálisis , Cristalografía por Rayos X , Dimerización , Metilación , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Especificidad por Sustrato/genética , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
12.
Nucleic Acids Res ; 47(16): 8675-8692, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31329932

RESUMEN

The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.


Asunto(s)
Metiltransferasas/química , Caperuzas de ARN/química , Proteínas de Unión al ARN/química , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica , Transcripción Genética
13.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934718

RESUMEN

Methoxylated coumarins represent a large proportion of officinal value coumarins while only one enzyme specific to bergaptol O-methylation (BMT) has been identified to date. The multiple types of methoxylated coumarins indicate that at least one unknown enzyme participates in the O-methylation of other hydroxylated coumarins and remains to be identified. Combined transcriptome and metabonomics analysis revealed that an enzyme similar to caffeic acid O-methyltransferase (COMT-S, S is short for similar) was involved in catalyzing all the hydroxylated coumarins in Peucedanum praeruptorum. However, the precise molecular mechanism of its substrate heterozygosis remains unsolved. Pursuing this question, we determined the crystal structure of COMT-S to clarify its substrate preference. The result revealed that Asn132, Asp271, and Asn325 govern the substrate heterozygosis of COMT-S. A single mutation, such as N132A, determines the catalytic selectivity of hydroxyl groups in esculetin and also causes production differences in bergapten. Evolution-based analysis indicated that BMT was only recently derived as a paralogue of caffeic acid O-methyltransferase (COMT) via gene duplication, occurring before the Apiaceae family divergence between 37 and 100 mya. The present study identified the previously unknown O-methylation steps in coumarin biosynthesis. The crystallographic and mutational studies provided a deeper understanding of the substrate preference, which can be used for producing specific O-methylation coumarins. Moreover, the evolutionary relationship between BMT and COMT-S was clarified to facilitate understanding of evolutionary events in the Apiaceae family.


Asunto(s)
Apiaceae/metabolismo , Vías Biosintéticas , Cumarinas/metabolismo , Secuencia de Aminoácidos , Apiaceae/química , Apiaceae/genética , Cumarinas/química , Minería de Datos , Evolución Molecular , Furocumarinas/química , Furocumarinas/metabolismo , Duplicación de Gen , Heterocigoto , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Fitoquímicos/análisis , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , Análisis de Secuencia de ARN , Especificidad por Sustrato , Transcriptoma/genética , Umbeliferonas/química , Umbeliferonas/metabolismo
14.
Appl Microbiol Biotechnol ; 103(8): 3439-3451, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30879089

RESUMEN

Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4-8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit 'affinity star' activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue-sinefungin (SIN). Here, we define a novel type of inherently built-in 'star' activity, exemplified by TsoI. The TsoI 'star' activity cannot be described under the definition of the classic 'star' activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , División del ADN , Fragmentación del ADN , Dimetilsulfóxido/química , Activación Enzimática , Oligonucleótidos/química , S-Adenosilhomocisteína/análogos & derivados , S-Adenosilhomocisteína/química , Especificidad por Sustrato , Thermus/enzimología
15.
Elife ; 82019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30785395

RESUMEN

SETD3 is a member of the SET (Su(var)3-9, Enhancer of zeste, and Trithorax) domain protein superfamily and plays important roles in hypoxic pulmonary hypertension, muscle differentiation, and carcinogenesis. Previously, we identified SETD3 as the actin-specific methyltransferase that methylates the N3 of His73 on ß-actin (Kwiatkowski et al., 2018). Here, we present two structures of S-adenosyl-L-homocysteine-bound SETD3 in complex with either an unmodified ß-actin peptide or its His-methylated variant. Structural analyses, supported by biochemical experiments and enzyme activity assays, indicate that the recognition and methylation of ß-actin by SETD3 are highly sequence specific, and that both SETD3 and ß-actin adopt pronounced conformational changes upon binding to each other. In conclusion, this study is the first to show a catalytic mechanism of SETD3-mediated histidine methylation on ß-actin, which not only throws light on the protein histidine methylation phenomenon but also facilitates the design of small molecule inhibitors of SETD3.


Asunto(s)
Actinas/química , Histona Metiltransferasas/química , Conformación Proteica , S-Adenosilhomocisteína/química , Actinas/genética , Animales , Sitios de Unión , Histidina/química , Histidina/genética , Histona Metiltransferasas/genética , Humanos , Metilación , Ratones , Péptidos/química , Unión Proteica
16.
Nucleic Acids Res ; 47(5): 2654-2665, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30590743

RESUMEN

S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)-the product of SAM-dependent methyl group transfer reactions-and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational 'OFF'-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.


Asunto(s)
Biosíntesis de Proteínas , Riboswitch/genética , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Evolución Molecular , Genómica , Ligandos , ARN/química , ARN/genética , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
17.
Sci Adv ; 4(8): eaat2720, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30151425

RESUMEN

The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.


Asunto(s)
Amidas/metabolismo , Metiltransferasas/metabolismo , Nitrógeno/metabolismo , Fragmentos de Péptidos/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Catálisis , Cristalografía por Rayos X , Electrones , Metilación , Metiltransferasas/química , Nitrógeno/química , Fragmentos de Péptidos/química , Conformación Proteica , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química
18.
Chem Rec ; 18(12): 1745-1759, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30079624

RESUMEN

Protein lysine methyltransferases (PKMTs) are epigenetic regulators that modulate gene transcription and physiological functions by catalyzing the post-translational methylation of specific lysine residues of substrate proteins, such as histones. They are considered to be candidate drugs for the treatment of various diseases, including acute myeloid leukemia, and in the past decade, potent and selective inhibitors of individual PKMTs have been developed. Some are currently under clinical trial. In this review, we will focus on some breakthrough PKMT inhibitors, and discuss chemistry-based methods available for elucidation of the physiological functions of PKMTs and methylated proteins.


Asunto(s)
Epigenómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Histonas/antagonistas & inhibidores , Humanos , Metilación , Piperazinas/química , Piperazinas/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo
19.
Biochemistry ; 57(26): 3733-3740, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29733595

RESUMEN

The C-terminal domain of cobalamin-dependent methionine synthase (MetH) has an essential role in catalyzing the reactivation of the enzyme following the oxidation of its cobalamin cofactor. This reactivation occurs through reductive methylation of the cobalamin using S-adenosylmethionine (AdoMet) as the methyl donor. Herein, we examine the molecular recognition of AdoMet by the MetH reactivation domain utilizing structural, biochemical, and computational approaches. Crystal structures of the Escherichia coli MetH reactivation domain in complex with AdoMet, the methyl transfer product S-adenosylhomocysteine (AdoHcy), and the AdoMet analogue inhibitor sinefungin illustrate that the ligands exhibit an analogous conformation within the solvent-exposed substrate binding cleft of the enzyme. AdoMet binding is stabilized by an intramolecular sulfur-oxygen chalcogen bond between the sulfonium and carboxylate groups of the substrate and by water-mediated carbon-oxygen hydrogen bonding between the sulfonium cation and the side chains of Glu1097 and Glu1128 that bracket the substrate binding cleft. AdoMet and sinefungin exhibited similar binding affinities for the MetH reactivation domain, whereas AdoHcy displayed an affinity for the enzyme that was an order of magnitude lower. Mutations of Glu1097 and Glu1128 diminished the AdoMet/AdoHcy binding selectivity ratio to approximately 2-fold, underscoring the role of these residues in enabling the enzyme to discriminate between the substrate and product. Together, these findings indicate that Glu1097 and Glu1128 in MetH promote high-affinity recognition of AdoMet and that sinefungin and potentially other AdoMet-based methyltransferase inhibitors can abrogate MetH reactivation, which would result in off-target effects associated with alterations in methionine homeostasis and one-carbon metabolism.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , S-Adenosilmetionina/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/química , Sitios de Unión , Carbono/química , Carbono/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Oxígeno/química , Oxígeno/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , Agua/química , Agua/metabolismo
20.
Nucleic Acids Res ; 45(15): 9019-9029, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911116

RESUMEN

The tRNA m1G9 methyltransferase (Trm10) is a member of the SpoU-TrmD (SPOUT) superfamily of methyltransferases, and Trm10 homologs are widely conserved throughout Eukarya and Archaea. Despite possessing the trefoil knot characteristic of SPOUT enzymes, Trm10 does not share the same quaternary structure or key sequences with other members of the SPOUT family, suggesting a novel mechanism of catalysis. To investigate the mechanism of m1G9 methylation by Trm10, we performed a biochemical and kinetic analysis of Trm10 and variants with alterations in highly conserved residues, using crystal structures solved in the absence of tRNA as a guide. Here we demonstrate that a previously proposed general base residue (D210 in Saccharomyces cerevisiae Trm10) is not likely to play this suggested role in the chemistry of methylation. Instead, pH-rate analysis suggests that D210 and other conserved carboxylate-containing residues at the active site collaborate to establish an active site environment that promotes a single ionization that is required for catalysis. Moreover, Trm10 does not depend on a catalytic metal ion, further distinguishing it from the other known SPOUT m1G methyltransferase, TrmD. These results provide evidence for a non-canonical tRNA methyltransferase mechanism that characterizes the Trm10 enzyme family.


Asunto(s)
Ácido Aspártico/química , ARN de Transferencia/química , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Ácido Aspártico/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Metilación , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...